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Abstract 
Modern exploration missions require modern control systems-control systems that can handle catastrophic 

changes in the system's behavior, compensate for slow deterioration in sustained operations, and support fast system 
ID. Adaptive controllers, based upon Neural Networks have these capabilities, but they can only be used 
safely if proper verification & validation (V&V) can be done. In this paper we present our V & V approach and 
simulation result within NASA's Intelligent Flight Control Systems (IFCS). 

I. D ~ ~ t ~ ~ ~ ~ c t i ~ ~  
odern aircraft, UAVs, and robotic spacecraft pose substantial requirements on controllers in the light of ever 
increasing demands for reusability, affordability, and reliability. The individual systems (which are often 

nonlinear) must be controlled safely and reliably in environments where it is virtually impossible to analyze-ahead 

gyros, bearings of reaction wheels, valves) may deteriorate or break during autonomous UAV operation or long- 
lasting space missions, leading to a sudden, drastic change in the vehicle performance. Manual repair or replacement 
is ngt 'I? optiotl in such czses. IEstead, the system must be able to cope with equipment failure and deterioration. 
Controllability of the system must be retained as good as possible or re-established as fast as possible with a 
minimum of deactivation or shutdown time. In such situations the control engineer has to employ adaptive control 
systems that automatically sense and correct themselves whenever drastic disturbances and/or severe changes in the 
plant or environment occur. 

' ' -all + ~ ~ T t a m a ~ ~ ~ ~ i ~ e n ~ ~ ~ ~ ~ - ~ ~ r ~ ~ e n t a ~ € a ~ o r ~ o ~ e ~ a ~ p l e ,  systemmmpo-ni-gr 

Over the recent years, artificial neural networks (NN) have found their way into various safety-related and 
safety-critical areas, like transportation, avionics, environmental monitoring/control, and medical applications. 
Although many of these applications have turned out to be highly successful, they also pose high risks and 
significant development costs, producing concerns and reluctance to adopting these new and sometimes complex 
and difficult-to-understand technologies. Of chief concern is the general question of how can it be guaranteed that 
the NN-based adaptive control system performs as expected. -While theory and concepts of adaptive systems and 
intelligent control have been studied in depth over the past decade or so, only very little attention has been paid to 
the issue of validating the correctness and guaranteeing safety of their operation and monitoring their performance 
during operation. 

Validating the correct performance of a controller requires a set of concise design requirements and performance 
criteria. In the case of control systems for piloted aircraft, generally applicable quantitative design criteria are very 
difficult to obtain. The reason for this is that the ultimate evaluation of a human-operator control system is 
necessarily subjective and, with aircraft, the pilot evaluates the aircraft in different ways depending on the type of 
aircraft and phase of flight. In most aerospace applications (e.g., for flight control systems), performance assessment 
is carried out in terms of handling qualities. Handling qualities may be defined as those dynamic and static 
properties of a vehicle that permit the pilot to fully exploit its performance and other potential in a variety of 
missions and roles. Traditionally, handling quality is measured using the Cooper-Harper rating done subjectively by 
hnr?lan pilots for aircrzf conirg!. In c)ur study, which wil! be clesr,rihec! in this paperi we use a quantitative approach 
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using low order equivalent system (LOES) model of the aircraft. The LOES approach is to match the high order 
responses with the low order responses of the familiar modes. LOES allows specification of model dynamics 
consisting of low order systems with preferred values of damping, frequency or time constant. A central element for 
assessing the performance of a neuro-adaptive controller is the ability to dynamically monitor the performance of 
the adaptive neural network. 

We have developed a set of related tools, which can be used in all phases of the software lifecycle (including 
system design, simulation, system prototype development, deployment, and in-operation monitoring) to assess the 
performance of neural controllers while in-flight. These tools (confidence tool, envelope tool) are based on 
Bayesian cnethods and are capable produce statistical confidence intervals for the controller signals. Using this 
knowledge of the error and of the network or model, our tools will allow real-time assessment of vehicle 
performance and provide an estimate of important handling quality characteristics. 

In this paper we will present the methods of measuring the performance of a neuro-adaptive controller and how 
the tool performance metric relates to the control system robustness and the vehicle handling characteristics. 
Simulation results will be presented and tool design concepts will be explained. 

11. i3 IFCS Control Architecture 
We will illustrate our approach with the adaptive flight control system(FCS), which has been developed within 

the IFCS project at NASA. The target aircraft for this controller is a specificaIly configured F15 jet aircraft. It is 
_ _ ~ _ _  

eqiipped wit additional aciuator smfaces (canards) that are iocated in front of the wings. By moving iheiii, the 
airflow over the wing can be modified in a wide range. Thus, this aircraft can be used to simulate failures like wing: 
damage during test Eights. Tine FCS (Figure 1) is a straight-forward dynamic inverse controiier: the piiot steering 
commands are mixed with the current sensor readings (airspeed, angle of attack, altitude) to form the desired 
behavior of the aircraft (measured as roll-rate, pitch-rate, and yaw-rate). The dynamic inverse model then calculates 
the required actuator movements (e.g., of aileron or rudder) to bring the aircraft into the desired state. If the 
aerodynamics of the aircraft changes (e.g., due to a broken surface), there is a deviation between desired and actual 
state. The neural network is trained during operation to produce a correction signal UAD to minimize this deviation. . 

I I 
Figure 1: lFCS Adaptive Control Architecture 

The controller (PCS Gen-11, [4]) uses a Sigixa-Pi neural neiwork. In this type of neural network, :he inputs are 
subjected to basis functions (e.g., square, scaling, logistic function). The output of the network is a weighted sum of 
a Cartesian product of these function values. For details of the control architecture and the network learning ruleL7. 

The experiments have been carried out on the Dryden F-15 simulator. The Dryden F-15 simulator is a 6-DOF 
Real-time simulation that simulates flight of the F-15B and the F-15 ACTNE aircraft. The Real-time complex 
consists of a Sun computer, a cockpit and a projector system for out the window (OTJVT) graphics. The coaplex has 
the ability to interface to external hardware for E-TE testing. The cockpit has its own embedded computers for the 
electric stick and cockpit interface unit. These components communicate with the main Real-time computer via high 
speed data bus. The Sun computer is a Unix-based system with multiple CPUs. The machine is equipped with 32 
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GB of memory and over 200 GB of disk space. The main simulation models are programmed in FORTRAN-77, 
C/C++, Ada-95 and openGL. These simulation programs simulate the actions of the F-153 aerodynamics, FCS, 
engines and other subsystems with a basic frequency. The entire complex is controlled via a Sun console where the 
user can enter commands to control the simulation and is operated by two people; one to fly and the other to operate 
the console. 

IV. 0 Network Performance Measuring and Assurance 

One of the key factors which limit the use of neuro-adaptive systems in safety critical applications has been the 
difficulty of demonstrating that the neural network will generate reliable outputs once it is in routine use. We have 
no way of quantifying the magnitude of errors one encounters in the output of the network For this reason the 
method of confidence interval can be used: a confidence interval gives an indication of how much uncertainty there 
is in our estimate of output; the narrower the interval, the more precise is our estimate.We have developed the 
Confidence tool, which is based on a Bayesian statistical model of the neural network. The tool considers the 
probability distribution of the NN output, based upon the posterior distribution of the weights. The confidence tool 
dynamically calculates the current performance characteristics of the system and thus provides a dynamic measure 
of how ielia3le the current approximation of the system is. The details of the tool can be found in9’” 

Figure 2 shows simulation results.. The experiments were conducted at a flighhsmdition: 20,000 feet altitude 
and 0.75 mach. Starting in a nominal mode, a failure (canard failure) isoccurring after some time. Around this time, 

~ _ _  ________ 

the pilot initiates a seqteiice of doublet inpiits, which makes ihe failiuie appaient and causes the NN to adapt. The 
blue line in Figure 2 shows the outpur. of the neural network (contxol augmentation signal Uad); the red lines 
comprise the confidence intervals around the network input. A narrow interval at the beginning shows that h e  
network has (as expected) a high confidence for the noninal mode. After the failure occurs, the confidence is 
dropping substantially (large confidence interval)-an indication that the network still has to adapt toward handling 
the failure scenario. Subsequent pilot commands still causes network adaptation. However, the confidence interval is 
much smaller now, a clear indication that the network is successfully learning to cope with this situation. 

andling Quality Analysis 

5.1 Handling Quality Metrics: Cooper Harper Rating and M E  1797 
Handling qualities are defined as “those qualities or characteristics of an aiScraft that govern the ease and 

precision with which a pilot is able to perform the tasks required in support of an aircraft role” (1). Pilots are asked 
to quantify handling qualities by assigning a numerical rating to a specific piioting task. The most common rating 
scale is the Cooper-Harper scale (see Figure 3), where numbers are awarded to different piloting situations 
according to their ease and precision5. 

This rating scale is a 10-point scale in which 1 is excellent and 10 represents actual loss of control. Three coarser 
levels of “Satisfactory” (rating 1-3), “Acceptable” (4-6), and “Controllable” (6-9) are often used instead. This rating 
is highly subjective, and thus difficult to describe in quantitative terms. The Military Specification MI-F-8785 
versions A, B and C (c. 1954-1975), defines quantitative criteria for different classes of aircraft (e.g., fighter, 
transport) and for different flight phases (Category A,B,C; e.g., combat, cruise, landing/takeoff). For an aircraft of a 
certain class, the MIL 1797 specifications require Level 1 handling qualities for flight conditions within the 
Operational Flight Envelope. In the Service Flight Envelope, Level 2 handling qualities are allowed. In a more 
extreme Permissible Flight Envelope, even Level 3 handling qualities are allowed. 
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Figure 2. Simulation results for Canard failure. The blue line is the network output; the red lines mark the 
confidence interval. 

I Xwdiing Qualities Rating Scaie I 

Figure 3. Cooper-Harper rating scale 

EvE;jjat;Ling the baseline haii&ng qu&t& of 22 adapsve systelTl poses r ; & p  chdlenges to &Le xJ&lJ 
practitioners. First, the response criteria for failures during and after adaptation must be defined and then it must be 
determined whether an adaptive control system. is producing adequate handling qualities during and after a failure. 
The criteria can be divided into three classes, Le. failure transient criteria, primary handling criteria and secondary 
handling criteria. The fKst type governs the transient excursions as the failure happens and while the adaptation is 
still taking place. The second type governs the handling qualities of the aircraft after the failure and after the 
adaptation when the neural net has detennbed the set of weights best suited to the faiied system. Tne second type is 
subdivided into two subtypes. The first subtype governs the conventional handling qualities of pitch due to pitch 
command, roll to roll command, yaw to yaw command, etc. and the second the off-axis handling qualities- for 
example, a failure in one side of a rolling tail may produce objectionable bank excursions in response to a pitch 
command. 
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5.2 Low order equivalent (LOE) Analysis 
Standard methods of analysis were used to examine the predicted handling qualities including Control 

Anticipation Parameter (CAP) plots and bandwidth plots. Simulated flight data was analyzed using the lower order 
equivalent systems method to determine aircraft response parameters. A simple short period pitch response model 
was chosen, based on a lower-order mode! plus a delay term representing the longitudinal pitch axis. A state space 
format was used to present pitch dynamics that demonstrated Level 1 handling qualities. The simulations were 
conducted at the flight condition of Mach 0.75 at 20K, to approximate the standard IFCS Flight Envelope. 

The lower order longitudina! mode! is defined by the following equatkn: 

where q is pitch rate, dep is pitch stick position, is the gain, wSp is short period frequency, L, is the dimensional 

lift curve slope, e-zs is a time delay term to approximate high frequency lag accrual and csp is short period damping. 

A Fast Fourier Transform (FFT) technique was used on the time history data to obtain the pitch-rate-to-stick- 
input transfer function. The FFT used stick displacement as input, and pitch rate in dedsec as output. The aircraft’s 
parameters were esbmated airectlyfrometimehistories~ann-flightpitchfrequencysweep for the F- 15 during 

analysis. These data were in turn matched by hand with a short period transfer function giving the results in Figure 
4. In this graph, results for flight data is shown in green. The system response for the LOE system is displayed in 
blue. The match of the aircraft and LOE behavior is adequate for the short period frequency range and the response 
being matched contains the airplane plus any closed- and open-loop control functions. 

a F-an -,,.‘ I flight, yielding a pitch respoxse that was subseqnently reduced to frequency response data using FFT 

Figure 5 shows the Control Anticipation Parameter (CAP) for the above simulation experiment. The CAP 
summarizes the LGE response with respect to short period damping. According io MIL-1797, the CAT has to satisfy 
certain requirements for a specific level of handling quality (level 1 or 2). These requirements are depicted in Figure 
5 as rectangular areas (bounded by red lines). In our case, the CAP (light blue dot at approx. (0.1,O.Q) is clearly 
within the Level 1 area, indicating a good short period damping performance. 

5.3 Full Model Handling Quality Analysis 
In the case of a no~Gna! ak-craft, LOE ma!ysls, as discussed above is sufficient tb determine the handling quality 

!eve!% However, damage in aircraft and non-linear effects, introduced by the adaptation, requires the use of an 
analysis methc;d, which uses the full model of the aicraft and csntrsller. In this paper, we describe two sets of 
experiments, which have been carried out using a Simulink model of the IFCS system. The detailed analysis of time 
deiays and transients in pitch response comprises an important aspect of handling quality. Larger time delays can 
lead to uncontrollable situations due to pilot-induced oscillations. We therefore present results of analyses of pitch 
response transients and frequency response. In all cases, we compare the behavior of the nominal aircraft with the 
behavior of the damaged aircraft, after adzptatioz? nf the neural network. 

5.3.1 Pitch response Transients 
This transient analysis is important to determine the “overshoot” in pitch response. We compare the development 

of the pitch rate in the nominal and failure (with neural network active) case. For this simulation, off-nominal gains 
for the canards (in the range between -0.5 to 2) have been used. Each of the six responses in Figure 6, Figure 7, and 

-wpu: ’u:e ne-a-d fiei oE 
is for the maximum negative canard gain failure and the last is for the maximum positive gain failure. The active 
neural net reduces the overshoot much more at the negative end of the gain range than at the positive end. At the 
positive extreme, the neural net response essentially does not alter the system response. Thus, our analysis indicates 
that the neural net: 

Fig-me 8 conipa-es a tiiiie i-istoi7. of versGs ncci& off {bp.e). yhE pigure 6 

1. 
2. 
3. 

reduces the failure transient noticeably for the negative canard gains 
does not reduce the smaller failure transients that result from positive canard gains 
does not distinguishably alter the response of the aircraft to pilot input following the transient, Le., its 
presence should not affect the handling qualities of the aircraft. 
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Figure 4. Equivalent System match of pitch response 
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Figure 5. Control Anticipation Parameter (CAP) 
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Figure 6 Pitch rate transients 

Figure 7 Pitch rate transients 
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Figure 8 Pitch rate transients 
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A number of exploratory runs were made to determine how the neural net affected the response of pitch rate to 
piloted control, an important component of handling qualities. The results indicated that the neural net did not affect 
the response to control. This is illustrated in Figure 9. This figure incorporates the maximum negative canard gain, 
which as we have pointed out is the case where the net has the maximum effect on reducing the failure transient. 
Despite the net's strong effect in reducing the failure transient (red response), the doublet responses immediately 
following the failure indicate no difference due to the presence of the net. 

m. rcigure 9 Negative canard gain failure and pilot doubiets, net on (red) versus off (bhie). 

5.3.2 Frequency Response 
In this experiment, we compare the frequency response of the LOE system with the full model. Figure 10 shows 

the response (measured in db, left) and the phase (in deg, right) over the frequency (in rads). Open squares indicate 
data, obtained by our LGE system, solid triangles correspond to our full model. In the nominal case, a good match 
between LOE and full model could be found. 

t 

D 
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3; 

Figure 10. Equivalent system for nominal: Z= 1.1, Wn= 2.9 radsec, tau=.005 sec 

Figure 10 shows a low-order-appearing response for the nominal aircraft with good damping (Z) and natural 
frequency (Wn) and time delay (tau). Figure 11 shows the situation for the damaged aircraft, after the network has 
been fully trained. The match between the LOES and the full model as well as the parameters are not as good as for 
the nominal case, but the high frequency lag does not decrease the natural fkequency greatly and does not introduce 
a large delay. The aircraft is less low-order-appearing than the nominal, as shown by the worse match. 
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Figure 11. Equivalent system for damaged aircraft with fd Iy  trained neural network: Z=.63, Wn=2.02 
racllsec, tau=.Q26 see 

VI. Conclusions 
this paper, we have presented ongoing work on the performance analysis of neural network based ____ adaptive 
I l t r o B ~ W ~ - m - u ~ ~ ~ u l t s  of the Confiaence-TZT that dynamically calculates a 

performance aet-ic for the nemal network. Importznt aspects f9r handling quality, as laid out in M E  1797 have 
been analyzed, using a low-order equivalent system of the aircraft and simulation results with the full model. 
‘Analysis of pitch response transients and frequency response have been discussed. Foi the noiiiinal akcrsft, a good 
match between the LOES and the full model could be established. In the failure case, the match is not as good, 
indicating that higher-order effects play a significant role in neuro-adaptive control-this aspect will be investigated 
in the future. 
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